
Lecture “Quantum Information” WS 17/18 — Exercise Sheet #5

Problem 1: The Bernstein-Vazirani algorithm.

This is a variation of the Deutsch-Jozsa problem. Suppose that the quantum black box computes one of
the functions fa, where fa(x) = a · x and a is an n-bit string. The task is to determinate a. Show that
Deutsch-Jozsa algorithm can solve this problem, i.e. can find the n-bit string a with probability one.

Problem 2: Grover’s algorithm with multiple marked elements.

Consider the Grover search problem of finding x0 such that f(x0) = 1 for some function f(x) ∈ {0, 1}.
In the lecture, we derived Grover’s algorithm which finds x0, given that it is unique. Now assume that
there are r > 1 solutions to the equation f(x) = 1. In other words, suppose that we have N states and
r of them are marked. The problem is to find one of the marked states with high probability.

Grover’s algorithm with mulitple solutions is very similar to the unique solution one. First, the oracle is
constructed the same way as before. Find the action of the oracle on a state |x〉. The remaining steps of
the algorithm remain unchanged. Perform a step-by-step analysis of this modified Grover’s algorithm,
and estimate the number of iterations needed ot obtain one of the marked elements with high probability.
How does the runtime of the algorithm scale in r and N? Compare this to the performance of a classical
algorithm.

Problem 3: Phase estimation.

Consider a unitary U with an eigenvector U |φ〉 = e2πiφ|φ〉. Assume that φ = 0.φ1φ2 . . . φn = 1
2φ1 +

1
4φ2 + . . . . Our goal will be to study ways to determine φ as accurately as possible, given that we can
implement U (and are given |φ〉).

1. First, consider that we use controlled-U operations CU |0〉|φ〉 = |0〉|φ〉, CU |1〉|φ〉 = |1〉e2πiφ|φ〉.
Describe a protocol where we apply CU to |+〉|φ〉, followed by a measurement, to infer information
about φ. Which information, and to which accuracy, can we obtain with N iterations?

2. Now consider a refined scheme. To this end, assume we can also apply controlled-U (2k) ≡ CUk
operations for integer k efficiently.
a) We start by applying CUn−1 to |+〉|φ〉. Which information can we infer? What measurement
do we have to make?
b) In the next step, we apply CUn−2, knowing the result of step a). What information can we
infer? What measurement do we have to make? Rephrase the measurement as a unitary rotation
followed by a measurement in the |±〉 basis.
c) Iterating the preceding steps, describe a procedure (circuit) to obtain |φ〉 exactly. How many

times do we have to evaluate controlled-U (2k)’s?
(Note: This procedure is known as quantum phase estimation.)

3. An alternative way to determine φ is to use the quantum Fourier transform. To this end, we
apply a transformation

∑
x |x〉|φ〉 7→

∑
x |x〉Ux|φ〉, followed by a quantum Fourier transform and

a measurement. Describe the resulting protocol, its outcome, and the number of U (2k)’s required.

4. Compare the two protocols derived in step 2 and 3.

5. What outcome will we obtain if we apply the phase estimation algorithm to a superposition of
different eigenstates

∑
k wk|φk〉? (It might help to first consider the case where we measure the

register with the |φk〉’s.)

6. Let us now consider the factoring problem. For a coprime with N (such as it appears in the
factoring problem, cf. lecture), the map U : |x〉 7→ |axmodN〉 is unitary (no proof required). This
unitary has periodicity r (with ar modN = 1), i.e., its eigenvalues are r’s roots of unity.
What happens if we apply phase estimation to this U , given we are provided with an eigenvector
|λ〉 of U?

7. Consider the form of the eigenvalues of U , and show that their equal weight superposition has a
simple form. Discuss how this can be used to determine r without knowing an eigenvector |λ〉 of
U . Discuss how this relates to Shor’s factoring algorithm.



Problem 4: Period finding.

In this problem, we will analyze the use of the Quantum Fourier transform for period finding in more
detail.

1. We start from a state 1
2n/2

∑
|x〉|f(x)〉, where the first register has n qubits, and f(x) has a period

r.

2. By measuring the second register, this collapses to 1√
k0

∑k0−1
k=0 |x0 + kr〉. Show that 2n

r − 1 <

k0 − 1 ≤ 2n

r .

3. By applying a QFT, we arrive at a state
∑
a`|`〉. Determine a`.

4. Plot |a`|2 for different n and r (in particular, check the regime where r � 2n). Verify that the
distribution is peaked around ` = s 2

n

r , where s is an integer (here, 2n

r can be seen as the frequency
of the periodic signal in f(x)).

5. Since s 2
n

r is not necessarily integer, the signal will be peaked around the ` closest to s 2
n

r . Consider
such an `s:

`s =
2n

r
s+ δs ; |δs| ≤ 1

2 .

Evaluate the expression for a`s . Simplify the obtained expression by using that r � 2n and thus
k0r/2

n ≈ 1 given the bound on k0 shown above.

6. Now derive a lower bound on |a`s |2, using that sin(x) ≥ 2
πx, and sin(x) ≈ x for small x. You

should find |a`s |2 ≥ 4
π2r .

7. Use this to show that the total probability to find one of those `s, i.e.,
∑
s |a`s |2, is bounded below

by 4/π2 ≈ 0.41. (What is the range of s?)

8. Overall, this shows that we find an `s such that |`s − 2n

r s| ≤
1
2 with sufficiently high probability.

Show that this can be used to infer s/r, given that r � 2n. (Hint: What is the minimum spacing
of s/r and s/(r + 1)? If this is sufficiently larger than the accuracy of `/2n ≈ s/r, this allows to
uniquely determine r, and subsequently s. How much smaller than 2n does r have to be?)


