
Lecture “Quantum Information” WS 16/17 — Exercise Sheet #5

Problem 1: Grover’s algorithm with multiple marked elements.

Consider the Grover search problem of finding x0 such that f(x0) = 1 for some function f(x) ∈ {0, 1}.
In the lecture, we derived Grover’s algorithm which finds x0, given that it is unique. Now assume that
there are r > 1 solutions to the equation f(x) = 1. In other words, suppose that we have N states and
r of them are marked. The problem is to find one of the marked states with high probability.

Grover’s algorithm with mulitple solutions is very similar to the unique solution one. First, the oracle is
constructed the same way as before. Find the action of the oracle on a state |x〉. The remaining steps of
the algorithm remain unchanged. Perform a step-by-step analysis of this modified Grover’s algorithm,
and estimate the number of iterations needed ot obtain one of the marked elements with high probability.
How does the runtime of the algorithm scale in r and N? Compare this to the performance of a classical
algorithm.

Problem 2: Phase estimation.

Consider a unitary U with an eigenvector U |φ〉 = e2πiφ|φ〉. Assume that φ = 0.φ1φ2 . . . φn = 1
2φ1 +

1
4φ2 + . . . . Our goal will be to study ways to determine φ as accurately as possible, given that we can
implement U (and are given |φ〉).

1. First, consider that we use controlled-U operations CU |0〉|φ〉 = |0〉|φ〉, CU |1〉|φ〉 = |1〉e2πiφ|φ〉.
Describe a protocol where we apply CU to |+〉|φ〉, followed by a measurement, to infer information
about φ. Which information, and to which accuracy, can we obtain with N iterations?

2. Now consider a refined scheme. To this end, assume we can also apply controlled-U (2k) ≡ CUk
operations for integer k efficiently.
a) We start by applying CUn−1 to |+〉|φ〉. Which information can we infer? What measurement
do we have to make?
b) In the next step, we apply CUn−2, knowing the result of step a). What information can we
infer? What measurement do we have to make? Rephrase the measurement as a unitary rotation
followed by a measurement in the |±〉 basis.
c) Iterating the preceding steps, describe a procedure (circuit) to obtain |φ〉 exactly. How many

times do we have to evaluate controlled-U (2k)’s?
(Note: This procedure is known as quantum phase estimation.)

3. An alternative way to determine φ is to use the quantum Fourier transform. To this end, we
apply a transformation

∑
x |x〉|φ〉 7→

∑
x |x〉Ux|φ〉, followed by a quantum Fourier transform and

a measurement. Describe the resulting protocol, its outcome, and the number of U (2k)’s required.

4. Compare the two protocols derived in step 2 and 3.

5. What outcome will we obtain if we apply the phase estimation algorithm to a superposition of
different eigenstates

∑
k wk|φk〉? (It might help to first consider the case where we measure the

register with the |φk〉’s.)

6. Let us now consider the factoring problem. For a coprime with N (such as it appears in the
factoring problem, cf. lecture), the map U : |x〉 7→ |axmodN〉 is unitary (no proof required). This
unitary has periodicity r (with ar modN = 1), i.e., its eigenvalues are r’s roots of unity.
What happens if we apply phase estimation to this U , given we are provided with an eigenvector
|λ〉 of U?

7. Consider the form of the eigenvalues of U , and show that their equal weight superposition has a
simple form. Discuss how this can be used to determine r without knowing an eigenvector |λ〉 of
U . Discuss how this relates to Shor’s factoring algorithm.

Problem 3: Syndrome measurement and correction for stabilizer codes.

1. We start by studying the error correction procedure for the 3-qubit bit flip code.



(a) Write down an explicit circuit for measuring the two syndromes Z1Z2 and Z2Z3 for the 3-
qubit bit flip code, using two ancilla qubits. Show that this indeed implements the POVM
measurement Pk given in the lecture.

(b) Write the correction circuit for each of the four outcomes of the error measurement. Express
this in terms of operations controlled by the classical measurement outcomes of the syndrome
measurement.

(c) Combine and modify step (a) and (b) to obtain a scheme which corrects the error without
measurement, provided it has access to fresh ancillas.

(d) Discuss how we can implement effective Pauli operations on the encoded (logical) qubit |0̂〉,
|1̂〉 by only acting with Paulis on the encoding (physical) qubits.

(e) Given two qubits encoded using the 3-qubit code, show that we can implement a CNOT
between the logical qubits by acting with CNOTs only on the physical qubits.

2. Show that the syndrome measurement and the error correction for any stabilizer codes can be
carried out using only CNOT, H, measurements in the Z basis, and ancillas (and possibly classical
side processing).

3. Give the circuit for the syndrome measurement for the 5-qubit code.

4. Derive the error syndrome for each of the 15 single-qubit errors in the 5-qubit code. Verify that
each error has its own syndrome, i.e., the code is non-degenerate.

Problem 4: Clifford circuits.

Clifford circuits are circuits which are built from S = ( 1 0
0 i ), H, and CNOT. In this problem, we will

show that a quantum computer which consists only of Clifford gates and Z measurements, and starting
from the |0 · · · 0〉 state, can be simulated efficiently classically. The core idea is that at each state of the
computation, the state of the system is a stabilizer state which can be kept described efficiently through
its stabilizers (which can be updated efficiently in any step of the computation).

1. Show that the gate set above allows to obtain all Pauli matrices.

2. Show that Clifford circuits C map products of Paulis P1 ⊗ · · · ⊗ Pn (Pi = I,X, Y, Z) to products
of Paulis, C(P1 ⊗ · · · ⊗ Pn)C† = P ′1 ⊗ · · · ⊗ P ′n. Explain why this maps independent stabilizers to
independent stabilizers.

3. In each step, we want to describe a unique state, i.e., for n qubits we have n independent stabilizers.
Show that implies that for any Pauli product O which commutes with the stabilizers, O or −O is
in the stabilizer.

4. Write a (minimal) set of stabilizers for the state |0 · · · 0〉.

5. Consider a quantum computation consisting of a sequence of Clifford gates C1, . . . , C`, starting in
the state |ψ0〉 = |0 · · · 0〉. Show that in each step of the computation, the state |ψs〉 = Cs|ψs−1〉 of
the quantum computer can be described by a set of stabilizers, and that the stabilizers for step s
can be efficiently computed from those for step s− 1 (given a Cs is a one- or two-qubit gate).

6. Finally, let us consider Z measurements. W.l.o.g., we will assume that we measure the first qubit.
a) Show that after the measurement of the first qubit, we are in an eigenstate of ZI · · · I.
b) Show that if ±ZI · · · I is contained in the stabilizer, there exists a minimal basis of stabilizers
which contains ±ZI · · · I, while all other stabilizers are of the form ±I ∗ · · · ∗ (where ∗ can be
arbitrary Paulis.) Show that this implies that the state is a product state of the first (measured)
qubit and the remaining ones, |i〉|ψ′〉, i.e., we can discard the first qubit. What are the new
stabilizer for |ψ′〉?
c) Consider first the case where ±ZI · · · I is contained in the stabilizer before the measurement.
What is the measurement outcome of a Z measurement on the first qubit? What is the new
stabilizer?
d) Second, consider the case where ±ZI · · · I is not contained in the stabilizer.

• Show that if ±ZI · · · I is not contained in the stabilizer, it must anti-commute with at least
one stabilizer, since we have n independent stabilizers.



• Next, show that we can find a minimal basis of stabilizers which only contains a single stabilizer
Ŝ which anti-commutes with ZI · · · I (i.e., which has a X or Y on the first qubit); in the
following, we will work in that basis.

• Use the existence of this Ŝ to show that 〈ψ|ZI . . . I|ψ〉 = 0, i.e., the measurement outcome is
completely random.

• Given a the measurement outcome 0 or 1, we are in an eigenstate of Snew = ±ZI · · · I,
respectively, i.e., Snew is a stabilizer for the post-measurement state. Furthermore, all other
stabilizers except Ŝ are still stabilizers, since they commute with Snew. Explain how this
allows us to obtain n independent stabilizers for the post-measurement state.

7. Put these steps together to explain how quantum computation with Clifford gates can be classically
simulated.

It is worth noting that all we need to do in the classical simulation is arithmetics modulo 2, which is
even much weaker than general polynomial-time classical computation; in fact, it is in a complexity class
called ⊕L (“parity L”). Thus, quantum computation with Clifford gates is even weaker than classical
computation.


