
Lecture “Quantum Information” WS 16/17 — Exercise Sheet #3

Problem 1: CHSH inequality I: Local hidden variable and no-signalling correlations.

Consider the scenario of the CHSH inequality. Let

〈C〉 = 〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉 − 〈a1b1〉 .

Here, ax = ±1 and by = ±1 are the outcomes obtained by Alice and Bob given an input (measurement
setting) of x (on Alice’s side) and y (on Bob’s side). The measurement is described by some joint
conditional probability distribution P (a, b|x, y) [i.e.,

∑
a,b P (a, b|x, y) = 1],

〈axby〉 =
∑
a,b,x,y

a bP (a, b|x, y) .

1. A local hidden variable (LHV) distribution is of the form

P (a, b|x, y) =
∑
λ

pλP
A
λ (a|x)PBλ (b|y) .

Use this to derive the bound |〈C〉| ≤ 2. (This should be done by explicitly using the form of
P (a, b|x, y), not by making any intuitive assumptions about LHV distributions. Hint: It can be
helpful – though not necessary – to make PAλ and PBλ deterministic by introducing a new random
variable λ.) Which property of P (a, b|x, y) allows to obtain this bound?

2. A non-signalling is a distribution which does not allow for communication between Alice and Bob,
i.e., Alice’s marginal distribution PA(a|x) =

∑
b P (a, b|x, y) does not depend on Bob’s input y, and

vice versa. Show that no-signalling distributions can obtain the maximum possible value |〈C〉| = 4.

3. Give a distribution P (a, b|x, y) which violates no-signalling.

Problem 2: CHSH inequality II: Tsirelson’s bound.

Tsirelson’s inequality bounds the largest possible violation of the CHSH inequality in quantum mechanics
(namely 2

√
2). To this end, let a0, a1, b0, b1 be Hermitian operators with eigenvalues ±1, so that

a20 = a21 = b20 = b21 = 11 .

Here, a0 and a1 describe the two measurements of Alice, and b0 and b1 those of Bob; in particular, this
means that Alice’s and Bob’s measurements commute, i.e. [ax, by] = 0 for all x, y = 0, 1. Define

C = a0b0 + a1b0 + a0b1 − a1b1 .

1. Determine C2.

2. The norm of a bounded operator M is defined by

‖M‖ = sup
|ψ〉

‖M |ψ〉‖
‖|ψ〉‖

,

that is, the norm of M is the maximum eigenvalue of
√
M†M . Verify that the norm has the

properties

‖MN‖ ≤ ‖M‖‖N‖ ,
‖M +N‖ ≤ ‖M‖+ ‖N‖ .

3. Find an upper bound on the norm ‖C2‖.

4. Show that for Hermitian operators ‖C2‖ = ‖C‖2. Use this to obtain an upper bound on ‖C‖.

5. Explain how this inequality gives a bound on the maximum possible violation of the CHSH in-
equality in quantum mechanics. This is known as Tsirelson’s bound, or Tsirelson’s inequality.



Problem 3: Remote state preparation.

Remote state preparation is a variation on the teleportation protocol. We consider a simple exam-
ple of a remote state preparation protocol. Suppose Alice possesses a classical description of a state
|ψ〉 = (|0〉 + eiφ|1〉)/

√
2 (on the equator of the Bloch sphere) and she shares an ebit |Φ+〉 with Bob.

Alice would like to prepare this state on Bob’s system. Show that Alice can prepare this state on Bob’s
system if she measures her system A in the (ψ,ψ⊥) basis, transmits one classical bit, and Bob performs
a recovery operation conditional on the classical information, but independent of state |ψ〉.

Problem 4: LOCC protocols.

Suppose |ψ〉 can be transformed to |φ〉 by LOCC. A general LOCC protocol can involve an arbitrary
number of rounds of measurement and classical communication. In this problem, we will show that
any LOCC protocol can be realized in a single round with only one-way communication, i.e., a proto-
col involving just the following steps: Alice performs a single measurement described by measurement
operators Kj , sends the result j to Bob, and Bob performs a unitary operation Uj on his system.

The idea is to show that the effect of any measurement which Bob can do can be simulated by Alice
(with one small caveat) so all Bob’s actions can actually be replaced by actions by Alice.

1. First, suppose that Bob performs a measurement with operators Mj =
∑
klMj,kl|k〉B〈l|B on a pure

state |ψ〉AB =
∑
λl|l〉A|l〉B , with resulting state denoted as |ψj〉. Now suppose that Alice performs

a measurement with operators Nj =
∑
klMj,kl|k〉A〈l|A on a pure state |ψ〉, with resulting state

denoted as |φj〉. Show that there exist unitaries Uj on system A and Vj on system B such that
|ψj〉 = (Uj ⊗ Vj)|φj〉.

2. Use this to explain how any multi-round protocol can be implemented with one measurement done
by Alice followed by a unitary operation done by Bob which depends on Alice’s outcome.

Problem 5: Majorization.

1. Show that majorization defines a pre-order on Rd≥0, i.e.,

(a) x ≺ x (reflexivity)

(b) x ≺ y and y ≺ z ⇒ x = z (transitivity)

Show that if we restrict to the ordered vectors x = (x1, . . . , xd), x1 ≥ x2 ≥ · · · ≥ 0, it defines a
partial order, i.e., we additionally have that

(c) x ≺ y and y ≺ x ⇒ x = y (antisymmetry)

2. Show that the order given by majorization is not total, i.e., find two vectors x and y which are not
related by majorization.

3. Let f be a convex function, and define F (x) =
∑
f(x). Show that x ≺ y implies that F (x) ≤ F (y),

a property known as “Schur convexity”. (Hint : Use the result given in the lecture which relates
majorization x ≺ y to the possibility to obtain x from y by a random process.)

4. Use the previous problem to show that the entanglement E(|ψ〉) = S(trA|ψ〉〈ψ|) cannot be increased
by LOCC. (Hint: x log(x) is convex.)

5. Show that x ≺ y if and only if for all real t,
∑d
j=1 max{xj − t, 0} ≤

∑d
j=1 max{yj − t, 0}, and∑d

j=1 xj =
∑d
j=1 yj .

6. Use the previous result (point 5.) to show that the set of x such that x ≺ y is convex.


