Problem 1

Show that the conditions derived for the ground states $|\psi_{\alpha}(s)\rangle$ of a Hamiltonian H_s which is connected to the toric code via a gapped path (i.e., via quasi-adiabatic continuation), namely

$$\begin{aligned} \langle \psi_{\alpha}(s) | O | \psi_{\alpha}(s) \rangle &= \text{const.} + O(e^{l/\xi}) \\ \langle \psi_{\alpha}(s) | O | \psi_{\beta}(s) \rangle &= O(e^{-l/\xi}) \quad (\text{ for } \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0) \end{aligned}$$

still hold when taking into account the rotation G(s) of the ground subspace,

$$|\psi_{\alpha}(s)\rangle = \sum_{\beta} G_{\alpha\beta}(s)V(s)|\psi_{\beta}(0)\rangle \;.$$

Problem 2

- a) Consider the horizontal loop operator Z_h in the toric code. Derive the operator $R_z(\phi) = \exp[-iZ_h\phi/2]$ which corresponds to a rotation of the encoded qubit about the z axis. Also compute the corresponding x rotation $R_x(\theta) = \exp[-iX_v\phi/2]$. Convince yourself that each of them is (i) unitary and (ii) can be moved arbitrarily by multiplying it with the Hamiltonian terms A_v and B_p .
- b) Now consider the operation $U = R_z(\phi)R_x(\theta)R_z(\psi)$. (This can be used to realize an arbitrary unitary on the qubit subspace.) Convince yourself that U is unitary, it is string-like, and it can still be moved arbitrarily by multiplying it with the A_v and B_p .
- c) Show that for the Toric Code, it holds for any local operator O that

$$P_0 O P_0 = c_O P_0 ,$$

where P_0 is the projector onto the ground space, and c_O is a constant which depends on O. Express c_O as a function of O and P_0 .

Problem 3

In Lectures 7 and 8, we have used that a quasi-adiabatically evolved operator O(s) can be approximated by $O^{\ell}(s)$ (supported on a region of size ℓ) up to accuracy $\sim e^{-\ell/\xi}$. However, this was not exactly what we derived.

- a) Reconsider the derivation of the quasi-adiabatic evolution and its decay in Lecture 6. What is the decay we obtain from there?
- b) In order to obtain a strictly exponential decay, we could have used a filter function F which is constructed from a Gaussian rather than from a smooth function g with compact support in Fourier space, following the proceduce of Problem 1 on Exercise Sheet 3. Show that this allows to obtain an error $||O^{\ell}(s) - O(s)||$ which is exponentially small in s. Is there also a price to pay for using Gaussians? How should we choose the trade-off in this case? (*Note:* The idea of this part is not so much to carry out a rigorous calculation – though this is of course possible – but to identify the different sources of error, their scaling, and their relation.)