Problem 1 ((a)–(c) easy, (d) a bit tricky)

We have defined the operator norm as $||A|| = \sup_{|\phi\rangle} \frac{|A|\phi\rangle|}{||\phi\rangle|}$. Show that

- (a) $|A|\phi\rangle| \le ||A|| \, ||\phi\rangle|$.
- (b) For U and V unitary, ||VAU|| = ||A||.
- (c) $||AB|| \le ||A|| ||B||$.
- (d) Show that $||A \otimes 1\!\!1|| = ||A||$. (*Hint:* The " \geq " direction should be easy. To prove the " \leq " direction, use that any normalized vector on a bipartite system can be written as $|\phi\rangle = \sum_i \sqrt{p_i} |\alpha_i\rangle |\beta_i\rangle$, with $p_i \geq 0$, $\sum p_i = 1$, and $\langle \alpha_i | \alpha \rangle_j = \langle \beta_i | \beta \rangle_j = \delta_{ij}$.)

Problem 2 (easy to medium)

For any operator A on a lattice $\Lambda,$ we can construct an operator \tilde{A} which acts only a sub-region Z through

$$\tilde{A} := \int \mathrm{d}U U A U^{\dagger} \; .$$

Here, $\int dU$ is an integral over all unitary matrices acting on $\Lambda \backslash Z$, where the integral is over the so-called Haar measure (or unitarily invariant measure), which means that the integral has the property that

$$\int \mathrm{d}f(U) = \int \mathrm{d}f(VU) = \int \mathrm{d}f(UV)$$

for any unitary V acting on $\Lambda \backslash Z$.

(a) Show that the unitary invariance of the integral implies that $V\tilde{A} = \tilde{A}V$ for any unitary V acting on $\Lambda \backslash Z$.

It turns out that this property implies that \tilde{A} is of the form $\tilde{A}_Z \otimes \mathbb{1}_{\Lambda \setminus Z}$, i.e., \tilde{A} is an operator supported on Z. This is a consequence of Schur's lemma (a fundamental lemma in representation theory), and we are not going to prove this here. Rather, we want to show that \tilde{A} provides a good approximation to A, given a Lieb-Robinson type bound on commutators.

(b) Consider operators $A_X(t)$ and B_Y as they appear in the Lieb-Robinson bound, let $K_l(X)$ be the circle of radius l around X, and define $\tilde{A}_X(t)$ as above with U supported in $\Gamma \setminus K_l(X)$. Show that

$$\|\tilde{A}_X(t) - A_X(t)\| \le \int \mathrm{d}U \|[A_X(t), U]\|$$

and argue how this shows that $A_X(t)$ is well approximated by an operator $A_X(t)$ which is supported in $K_l(X)$ given a Lieb-Robinson bound holds. (*Hint:* Use that $UAU^{\dagger} = A + U[A, U^{\dagger}]$.)

Problem 3 (medium)

Show that the Lieb-Robinson bound given in the Lecture gives rise to the following bound (under the same conditions as the original Lieb-Robinson bound): There exists a velocity v such that for all $t \leq l/v$, it holds that

$$||[A_X(t), B_Y]|| \le \frac{vt}{l}g(l)|X| ||A_X|| ||B_Y|| ,$$

where l = d(X, Y), and g(l) decays exponentially with l. This is, outside the "light cone" l = vt, the correlations decay exponentially with the distance (and linearly with the "angle" vt/l).

(*Hint*: Choose a velocity $v = \alpha(2s/\mu)$ with $\alpha > 1$, and use $e^x - 1 \le xe^x$.)

How does the rate of the exponential decay of g(l) depend on the chosen velocity v, i.e., on the α above?