
Lecture “Quantum Optics” — Exercise Sheet #6

Problem 1 (part 1+2 easy, part 3 tricky)

1. Consider a two-level atom which is initially prepared in state |e〉, and which interacts resonantly
(i.e., the detuning is zero, ∆r = 0) with a general single-mode light field |ψ〉 =

∑∞
n=0 cn|n〉, as

described by the Jaynes-Cummings-model. What is the state of the system (atom+light field) at
time t?

2. Now let |ψ〉 be a coherent light field. What is the probability p(t) to find the atom in the ex-
cited state after an interaction time t? Study the resulting function p(t) numerically for different
strengths |α|2 of the coherent field (both for weak and strong fields). What do you find? How does
it compare to the behavior which we have found for a classical light field of the same strength?

3. Can you (qualitatively) explain the behavior observed? How can one estimate the time scales
appearing? (For this, remember that a for a coherent beam, the average photon number is n0 =
|α|2, and the standard deviation is

√
n0. For |n − n0| � n0, you can approximate

√
n+ 1 ≈√

n0 + 1(1 + 1
2
n−n0

n0+1 ).

Problem 2 (medium)

In problem 3, it is shown how to derive an effective Hamiltonian for the interaction between an atom
and a light mode in the so-called dispersive regime, i.e., when the detuning ∆� Ω0, which is of the form

Hdisp =
Ω2

0~
4∆

(σ+σ− + σza
†a)

In this problem, we want to compare the action of this Hamiltonian with the resonant (∆ = 0) Jaynes-
Cummings Hamiltonian

HJC = − iΩ0~
2

(σ+a− σ−a†) .

• Consider the atom initially in the state |e〉, and the light in the Fock state |n〉. Compare what
happens if they interact via (i) HJC and (ii) Hdisp. Show that the state evolving under Hdisp is
a product state at all times, while HJC entangles the atom with the cavity field. Check that the
system also stays in a product state under Hdisp if the atom is initially in the state (|e〉+ |g〉)/

√
2.

• Consider the case where the atom is initially in the state (|e〉+ |g〉)/
√

2, and the light field is in a
coherent state |α〉.
(i) Let them interact viaHdisp. What is the state after a time t? In particular, what is the state after
a time Ω2

0t/4∆ = π/2? Can the two states of the light field which occury be distinguished classically
for sufficiently large |α|, e.g. with an interference experiment (i.e., are they orthogonal)? If we
measure the atom in the basis (|e〉± i|g〉)/

√
2, what is the state of the light after the measurement?

(Note: Such macroscopically distinguishable superpositions are called “Schrödinger cats”.)

(ii) Using the intuition built in Problem 1 (and possibly using some numerics) compare this to
what happens for HJC for strong light fields if the system interacts for a time of order unity, i.e.,
Ω0t ∼ 1.

Problem 3 (lengthy)

In this problem, we study the effective evolution of an atom in a strongly detuned cavity, ∆r � Ω0, the
so-called dispersive regime. To this end, consider the Hamiltonian H = H0 + V , with H0 = ~ωr(a†a +
1
2 + 1

2σz) + 1
2~∆rσz and V = − i

2~Ω0(σ+a− σ−a†).

• First, transform the Hamiltonian into an interaction picture w.r.t. H0, this is, the state of the
system evolves as

−i~ ∂
∂t
|ψ(t)〉 = VI(t)|ψ〉 ,
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with VI(t) = eiH0t/~V e−iH0t/~. Determine the explicit form of VI(t). (It should look similar to V ,
but with time-dependent phases for each of the two terms.)

The time evolution of |ψ(t)〉 is formally described by the time-ordered exponential

|ψ(t)〉 = T
[
exp

(
−i
∫ t

0

dt′V (t′)/~
)]
|ψ(0)〉 .

This can be expanded to second order as

|ψ(t)〉 =

[
1− i

~

∫ t

0

dt′V (t′)− 1

~2

∫ t

0

dt′V (t′)

∫ t′

0

dt′′V (t′′)

]
|ψ(0)〉 . (1)

• Determine the first- and second-order integrals in Eq. (1). In the second-order integral, drop all
terms which scale like Ω2

0/∆
2 (this can be used to argue that most terms can be dropped already

before carrying out the outer integral).

You should now be left with

|ψ(t)〉 =

[
1 +

iΩ0

2∆

(
ei∆t − 1)σ+a+ h.c.

)
+

Ω2
0t

4i∆
(σ+σ− + σza

†a)

]
|ψ(0)〉 .

• Estimate the time scales on which the first term and on which the second term evolves, and show
that for long enough times t ' ∆/Ω2

0, the second term dominates (while the first averages out).

• By taking the time derivative of the second term, you can now derive the effective Hamiltonian

Heff =
Ω2

0~
4∆

(σ+σ− + σza
†a)

for the evolution in the dispersive regime. (Note that this Hamiltonian is very different from the
Jaynes-Cummings model: It does not change the state of the system in the “canonical” basis,
but only introduces phase shifts between them. As we see in Problem 2, this can still be used to
entangle the atom with the light.)

2


