Lecture "Quantum Optics" — Exercise Sheet #5

Problem 1 (easy)

1. Any pure state of a single qubit (i.e., a two-level system) can be written as

$$|\psi\rangle = e^{i\alpha} \left[\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle\right].$$
 (1)

Show that this implies that¹

$$|\psi\rangle\langle\psi| = \frac{1}{2}(\mathbb{1} + \vec{v}\cdot\vec{\sigma}) \text{ with } \vec{v}\in\mathbb{R}^3 \text{ and } |\vec{v}| = 1, \qquad (2)$$

(i.e., \vec{v} is a vector on the unit sphere in \mathbb{R}^3), where $\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^3 v_i \sigma_i$ with $\sigma_1 \equiv \sigma_x$, $\sigma_2 \equiv \sigma_y$, and $\sigma_3 \equiv \sigma_z$, and determine the form of \vec{v} . (You should find that \vec{v} is expressed in spherical coordinates in θ and ϕ .)

Further, show that conversely, any state of the form of the r.h.s. of Eq. (2) is indeed a pure qubit state, i.e., of the form (1).

Note: The vector \vec{v} is called the *Bloch sphere representation* of the state $|\psi\rangle$ (see Lecture 5).

- 2. Show that the expectation value of the Pauli operators is $\langle \psi | \sigma_i | \psi \rangle = v_i$; i.e., $|\psi \rangle$ desribes a spin which is polarized along the direction \vec{v} . (*Note:* This is particularly easy if you use that $\langle \psi | O | \psi \rangle = \text{tr}[|\psi \rangle \langle \psi | O]$ and $\text{tr}[\sigma_i \sigma_j] = 2\delta_{ij}$.)
- 3. Show that for any state $|\psi\rangle$ with corresponding Bloch vector \vec{v} , the state $|\phi\rangle$ orthogonal to it, i.e. with $\langle \psi | \phi \rangle = 0$ (for qubits, i.e., in \mathbb{C}^2 , this state is uniquely determined up to a phase!), is described by the Bloch vector $-\vec{v}$, i.e., it is located at the opposite point of the Bloch sphere.
- 4. Let $H = c\mathbb{1} + \vec{w} \cdot \vec{\sigma}$ with $\vec{w} \in \mathbb{R}^2$. What are the eigenvectors and eigenvalues of H? In particular, which are the Bloch vectors describing the eigenvectors? (*Note:* Try to use Eq. (2).)

Problem 2 (medium)

- 1. Let $x \in \mathbb{R}$, and A a matrix such that $A^2 = \mathbb{1}$. Show that $\exp(iAx) = \cos(x)\mathbb{1} + i\sin(x)A$.
- 2. Let $\vec{n} \in \mathbb{R}^3$ such that $|\vec{n}| = 1$, and define

$$R_{\vec{n}}(\theta) = \exp(-i\theta \vec{n} \cdot \vec{\sigma}/2)$$
.

Using part 1, show that

$$R_{\vec{n}}(\theta) = \cos(\theta/2) \,\mathbb{1} - i\sin(\theta/2)(\vec{n}\cdot\vec{\sigma})$$

3. Show that $R_{\vec{n}}(\theta)$ is unitary, and that conversely any one-qubit unitary operator U is of the form

$$U = e^{i\alpha} R_{\vec{n}}(\theta) \; .$$

Note: It can help to use that $\{1, \sigma_1, \sigma_2, \sigma_3\}$ forms a basis (over \mathbb{C}) for the space of *all* complex 2×2 matrices. (If you use this, you should convince yourself that this is true!)

Problem 3 (tricky)

Show that $R_{\vec{n}}(\theta)|\psi\rangle$ rotates the Bloch vector \vec{v} which describes $|\psi\rangle$ by an angle θ about the axis \vec{n} .

Hint: It is best to study how $|\psi\rangle\langle\psi|$ transforms, using the representation (2). Start by proving the claim for rotations about the z axis, i.e., $\vec{n} = (0, 0, 1)$. To generalize this to rotations about arbitrary axes, it is most convenient define a "rotated Pauli basis" $\vec{\sigma}' = (\sigma'_1, \sigma'_2, \sigma'_3)$ with $\sigma'_3 = \vec{n} \cdot \vec{\sigma}$ and σ'_1, σ'_2 chosen such that they satisfy the Pauli commutation relations, and re-express $\vec{n} \cdot \vec{\sigma} = \vec{n}' \cdot \vec{\sigma}'$ and $\vec{v} \cdot \vec{\sigma} = \vec{v}' \cdot \vec{\sigma}'$ in the $\vec{\sigma}'$ basis. This corresponds to choosing a new basis for the Bloch sphere such that \vec{n} points along the z axis. You can then convince yourself that because the new Pauli basis $\vec{\sigma}'$ satisfies the same algebraic relations, this describes a rotation about the re-defined z axis.

Alternatively, you can work out the full 3×3 transformation matrix for \vec{v} and compare it to the transformation matrix of a general rotation in \mathbb{R}^3 .

¹Note: The normalization in Eq. (2) given in the lecture was incorrect; it has been fixed in the uploaded lecture notes.