
Lecture “Analytical and Numerical Methods for Quantum Many-Body Systems
from a Quantum Information Perspective” — Exercise Sheet #6

1. If you haven’t done so in Problem 3 on the previous exercise sheet (#5), convince yourself that
the two representations of the cluster state – either as the joint eigenstate of Si = Xi ⊗ (

⊗
Zj), or

as the state obtained by starting from |+⟩⊗N and applying CPHASE=CZ gates along each edge –
describe the same state.

2. Verify that Pauli errors can be moved through CZ gates. This is, if the initial state is (P ⊗Q)|ψin⟩,
where P and Q are Paulis, then CZ(P ⊗Q)|ψin⟩ = (R⊗ S)CZ|ψin⟩, with R and S again Paulis.

3. Verify that the measurement pattern described in the lecture to implement a CZ gate (where there
are two extra sites between the two “target” sites) in measurement based computation works as
claimed.

4. Clifford circuits are generated by the gates S = ( 1 i ), H =
(
1 1
1 −1

)
/
√
2, and CZ = diag(1, 1, 1,−1).

Show that in measurement based computation, any Clifford circuit can be implemented without
using adaptive measurements, i.e., it can be implemented in a single parallel measurement layer.

5. In the last exercise sheet (Problem 3, Sheet 5) we have shown how to write the cluster state as a
PEPS. The aim of this problem is to understand measurement based computation using this PEPS
representation. (This is based on http://arxiv.org/abs/quant-ph/0311130.) In case you attended
the quantum information course, it will be very helpful to think of this in terms of teleportation
(you can also read up on this on the Wikipedia site on “Quantum Teleportation”)

• First, understand the action of a Z measurement. (Note that a projective Z measurement on
the physical level leads to projections in the Z basis applied to the individual virtual sites. On
the other hand, projecting one end of an entangled state onto a pure state can be described
as removing the entangled state and putting a certain pure state on the other end.)

• Second, understand the way one-qubit operations work by considering the PEPS representa-
tion of a one-dimensional cluster state. (Note that in a 1D cluster, projecting on the physical
level in the XY plane translates into projecting onto some maximally entangled state on the
virtual level, and that this is similar to what happens in teleportation.) Also understand the
way in which the read-out works.

• Finally, consider the way two-qubit operations work using PEPS.

6. Consider a one-dimensional classical Hamiltonian

H(s1, . . . , sN ) = h1,2(s1, s2) + h2,3(s2, s3) + · · ·+ hN−1,N (sN−1, sN ) ,

where sk = 1, . . . , d, and hk,k+1(sk, sk+1) ∈ R is the classical two-body Hamiltonian. Show that the
ground state of H can be found as follows: Denote by Ek(sk) the minimal energy of all Hamiltonian
terms left of k (i.e., h1,2, . . . , hk−1,k) as a function of sk (optimized over s1, . . . , sk−1). Show that
E1(s1) can be computed efficiently, and that given Ek(sk), one can compute Ek+1(sk+1). Show
that together, this allows to find the ground state of H. (This method is known as “dynamic
programming”.)
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