
Exercise Sheet 11

Quantum Information

To be handed in by July 9nd, 2015

Problem 1: Photonic quantum computation. (40 points)
Single photons can be used to implement qubits. One possible encoding is a dual-rail en-
coding where a single photon can be in one of two different paths, described by creation
operators a† and b†; i.e., the qubit is encoded as |0〉 = a† |Ω〉 and |1〉 = b† |Ω〉, where |Ω〉 is
the vacuum.

1. We can realize single-qubit gates if we couple the two modes on a beam splitter. The
action of the beam splitter (mapping the input modes ain and bin and output modes
aout and bout) is given by

aout = cos(θ) ain − sin(θ) bin

bout = sin(θ) ain + cos(θ) bin ,
(1)

where θ is a parameter described the degree of mixing of the beam splitter. Determine
the class of single-qubit gates which can be realized by such a beam splitter. (Note:
Beam splitters are linear optical elements, i.e., their action on any power ak etc. is
given by its action on b.)

2. Another way to implement a gate is by inserting a phase plate in the light path of a,
which acts (linearly) as aout = eiφain. Which gates can we realize this way?

3. Now let us consider two qubits, given by modes a1, b1 and a2, b2, where each pair
of modes contains exactly one photon. Consider that we insert a beam splitter with
θ = π/4 between modes b1 and b2.
a) First, consider the case where only one qubit is in state |1〉 (i.e., with one photon
incident on the beam splitter), and show that this will lead to states which are outside
of the qubit subspace, i.e., with more (or less) than one photon in one pair of modes
ak, bk).
b) Now consider that we insert a second beam splitter with angle θ′ after the first one
(acting on the same modes). Show that there is a choice of θ′ where the qubit subspace
is restored for the case of one incident photon.
c) Now consider the case of two incident photons (i.e., the input states |1〉1 |1〉2). Derive
the state after the beam splitter for θ = π/4. [Note: It might be convenient to invert
the relation (1) and apply it to the input state b†1b

†
2 |Ω〉]. You should find that both

photons always exit in the same mode, which is known as the Hong-Ou-Mandel effect.
d) What happens in the case of two incident photons if we insert a second beam splitter
in the path? Show that the qubit subspace is again restored for the right choice of θ′.
e) Show that this protocol did not implement any (non-trivial) two qubit gate. Show
that if we had a sufficiently strong nonlinear element which gives a phase shift of eiπ

to (b†)2 |Ω〉 but not to b† |Ω〉, we could use this to implement a controlled-Z gate.



Problem 2: CNOT gates from exchange interaction. (30 points)

In this problem, we will study how to obtain CNOT gates from exchange interactions of the
form

H =
∑

α=x,y,z

Jα σ
1
α ⊗ σ2

α +B1 (σ1
z ⊗ I) +B2 (I ⊗ σ2

z) ,

where σiα denotes the α’s Pauli matrix acting on site i, by applying the interaction for a time
t, i.e., U = e−iHt.

1. First, recall how the CNOT can be transformed into a Controlled-Z (CZ) gate using
single qubit gates; we will focus on the realization of the CZ gate in the rest of the
problem.

2. Show that there is a simple choice of the Jα and Bi (where in fact only one Jα is
non-zero) which allows to obtain CZ ∝ e−iHt, and give Jα, Bi, and t.

3. Now consider the isotropic case where Jx = Jy = Jz ≡ J , and find again J , Bi, and t
such that e−iHt is equivalent to CZ up to local unitaries. Show that these local unitaries
can also be realized using H for a different set of parameters, i.e., CZ ∝ e−iH1te−iH2t,
with H1, H2 the two sets of parameters.
(Hint: First, diagonalize

∑
σ1
α ⊗ σ2

α – note that this interaction is SU(2) invariant,
i.e., the eigenvectors can be labelled by S and Sz – and then express the rest of the
Hamiltonian in this basis, and use this to determine e−iHt.)

Problem 3: Computing with mixed states. (30 points)

In nuclear magnetic resonance (NMR) computing, computations are carried out in an en-
semble of molecules at room temperature.

1. Assume the relevant degrees of freedom of the molecule are described by a Hamiltonian
H which is rescaled to be of the order of 1. At room temperature, this gives a very
small β ≈ 10−4. Show that the thermal state ρ = e−βH/tr[e−βH ] is well approximated
by

ρ = 1
2n

(I − βH) .

2. Now consider the case of one qubit. Show that in this case, this is close to a “pseudo-
pure” state ρ = 1

2
(I − β |ψ〉 〈ψ|). What is the probability distribution of measurement

outcomes in the computational basis |0〉, |1〉? What is the variance? Now assume |ψ〉
is in a computational basis state. How many copies K of ρ do we need to measure in
order to be able to separate the two outcomes with good confidence (say, one standard
deviation)?

3. Now consider a pseudo-pure state of n qubits, ρ = 1
2n

(I − β |ψ〉 〈ψ|). Repeat the
previous argument for this case – how does the number of copies we need to measure
to distinguish the 2n different outcomes scale with n (assuming again that |ψ〉 is in a
computational basis state)?


