
Exercise Sheet 9

Quantum Information

To be returned no later than June 25, 2015

(20 points) Problem 1: Quantum error-correction conditions.
In this exercise we will rephrase a condition for the existence of an error-correcting code. Here the
quantum code space is defined not by its basis, but by a projector onto it.
Let C be a quantum code, and let P be the projector onto C. Suppose E is a quantum operation
with operation elements {Ej}. Prove that the following condition is necessary and sufficient for the
existence of an error-correction operation R correcting E on C

PE†
iEjP = αijP,

for some Hermitian matrix α of complex numbers.
Hint: For necessity condition consider a state PρP and note that it is in the code space for all ρ and
therefore it has to be recoverable. Use the existence of the recovery operation R = {Rj} and write
out this condition explicitly. You would see that two operations on ρ lead to the same result, and
therefore these operations are unitarily equivalent. Write the equivalence condition. Using that R is
trace-preserving operation deduce the necessary condition.
For sufficient condition, construct an explicit error-correction operation R. Use the two-part form
that was used for the Shor code - error-detection and then recovery. Diagonalize matrix α and let
us denote d = u†αu, where u is unitary and d is diagonal. Show that operators Fk =

∑
i uikEi are

also a set of operation elements for E . Show that {Fj} satisfy a simpler (but similar) quantum error-
correction condition than {Ej}. Use polar decomposition to find a projector onto a subspace onto
with the coding subspace is rotated by Fk. These projectors (possibly with an additional projector)
define a syndrome measurement. The recovery is performed by applying a transpose of a unitary that
appeared in the polar decomposition previously. Write the corresponding quantum operation R and
show that it indeed recovers any state ρ, i.e. show that R(E(ρ)) ∝ ρ.

(20 points) Problem 2: Verification of error-correction conditions.
1) Consider the three qubit bit flip code with corresponding projector onto the code space P =

|000〉 〈000|+ |111〉 〈111|. The noise process this code protects against has operation elements

{
√

(1− p)3 I,
√
p(1− p)2X1,

√
p(1− p)2X2,

√
p(1− p)2X3},

where p is the probability that a bit flips. Note that this quantum operation is not trace-preserving,
since we have omitted operation elements corresponding to bit flips on two and three qubits. Verify
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the quantum error-correction conditions for this code and noise process.
2) Consider [[7,1,3]] Steane code code discussed in the lecture. Remind that this code can correct an
error on any single qubit. Verify the quantum error-correction conditions for this code.

(20 points) Problem 3: Quantum Hamming bound.
Here we will prove quantum Hamming bound, therefore you may not use the bound a priori in this
exercise. Remind that for a non-degenerate code there is measurement that can diagnose the error
that occurred. In other words, a code with basis {|j̄〉} that satisfies a condition 〈j̄|E†

aEb |̄i〉 = δabδij
is non-degenerate. In this case each Ea take the code subspace to a set of mutually orthogonal "error
subspaces."
A non-degenerate code encodes k qubits in n qubits in such a way that it can correct errors on any
subset of t or fewer qubits.
- Suppose j ≤ t errors occurred. How many locations where these errors can occur?
- With each such set of location how many errors can occur?
- Combining previous calculations, what is the total number of error that may occur on t or fewer
qubits?
- Assuming a non-degenerate code, each of the errors must correspond to an orthogonal how-big-
dimensional space?
- All of these subspaces must be fitted into the total how-big dimensional space?
- Comparing the dimensions of these spaces will lead to the Hamming bound. Write it out providing
explanations.

(20 points) Problem 4: Classical codes.
1) Let H be a parity check matrix such that any d − 1 columns are linearly independent, but there
exists a set of d linearly dependent columns. Show that the code defined by H has distance d.
2) Singleton bound. Show that an [n, k, d] code must satisfy n− k ≥ d− 1.
3) Hamming code. Suppose r ≥ 2 is an integer and let H be the matrix whose columns are all 2r − 1

bit strings of length r which are not identically 0. This parity check matrix defines a linear code with
n = 2r−1 and k = 2r−r−1, known as a Hamming code. Show that all Hamming codes have distance
3, and thus can correct an error on a single bit.
4) Gilbert-Varshamov bound. This bound is one of the bounds that are used to check whether or not
codes with particular code parameters exist. Gilbert-Varshamov bound states that for large n there
exist an [n, k] error-correcting code protecting against error on t bits for some k such that

k

n
≥ 1− S

(2t

n

)
,

where S(x) = −x log x− (1− x) log(1− x) is the binary Shannon entropy. Prove this bound.

(20 points) Problem 5: [[7,1,3]] Steane code.
Remind that in the construction of the Steane code CSS(C1, C2), code C1 was taken to be [7,4,3]
Hamming code and C2 = C⊥
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1) Verify that the parity check matrix of C2 is equal to the transposed generator matrix of C1.
2)Determine the codewords of C2.


