
Exercise Sheet 8

Quantum Information

To be handed in by June 18th, 2015

Problem 1: Phase estimation. (35 points)

Consider a unitary U with an eigenvector U |φ〉 = e2πiφ |φ〉. Assume that φ = 0.φ1φ2 . . . φn =
1
2
φ1 + 1

4
φ2 + . . . . Our goal will be to study ways to determine φ as accurately as possible,

given that we can implement U (and are given |φ〉).
1. First, consider that we use controlled-U operations CU |0〉 |φ〉 = |0〉 |φ〉, CU |1〉 |φ〉 =
|1〉 e2πiφ |φ〉. Describe a protocol where we apply CU to |+〉 |φ〉, followed by a measure-
ment, to infer information about φ. Which information, and to which accuracy, can
we obtain with N iterations?

2. Now consider a refined scheme. To this end, assume we can also apply controlled-
U (2k) ≡ CUk operations for integer k efficiently.
a) We start by applying CUn−1 to |+〉 |φ〉. Which information can we infer? What
measurement do we have to make?
b) In the next step, we apply CUn−2, knowing the result of step a). What information
can we infer? What measurement do we have to make? Rephrase the measurement as
a unitary rotation followed by a measurement in the |±〉 basis.
c) Iterating the preceding steps, describe a procedure (circuit) to obtain |φ〉 exactly.
How many times do we have to evaluate controlled-U (2k)’s?
(Note: This procedure is known as quantum phase estimation.)

3. An alternative way to determine φ is to use the quantum Fourier transform. To this
end, we apply a transformation

∑
x |x〉 |φ〉 7→

∑
x |x〉Ux |φ〉, followed by a quantum

Fourier transform and a measurement. Describe the resulting protocol, its outcome,
and the number of U (2k)’s required.

4. Compare the two protocols derived in sections 2 and 3.

5. What outcome will we obtain if we apply the phase estimation algorithm to a super-
position of different eigenstates

∑
k wk

∣∣φk〉? (It might help to first consider the case
where we measure the register with the

∣∣φk〉’s.)
6. Let us now consider the factoring problem. For a coprime with N (such as it appears in

the factoring problem, cf. lecture), the map U : |x〉 7→ |axmodN〉 is unitary (no proof
required). This unitary has periodicity r (with ar modN = 1), i.e., its eigenvalues are
r’s roots of unity.
What happens if we apply phase estimation to this U , given we are provided with an
eigenvector |λ〉 of U?

7. Consider the form of the eigenvalues of U , and show that their equal weight superposi-
tion has a simple form. Discuss how this can be used to determine r without knowing
an eigenvector |λ〉 of U . Discuss how this relates to Shor’s factoring algorithm.



Problem 2: Factoring 15. (15 points)

Verify the factoring algorithm (i.e., the reduction to period finding described in the lecture)
for N = 15 – i.e., consider all a = 2, . . . , N − 1, check wether gcd(a,N) = 1, find r s.th.
ar modN = 1 (you don’t have to use a quantum computer), and check if this can be used
to compute a non-trivial factor of N . How many different cases do you find? What possible
periods r appear?

Problem 3: The 3-qubit bit flip code. (25 points)

1. Write down an explicit circuit for measuring the two syndromes Z1Z2 and Z2Z3 for the
3-qubit bit flip code, using two ancilla qubits. Show that this indeed implements the
POVM measurement Pk given in the lecture.

2. Write the correction circuit for each of the four outcomes of the error measurement.
Express this in terms of operations controlled by the classical measurement outcomes
of the syndrome measurement.

3. Combine and modify step 1 and 2 to obtain a scheme which corrects the error without
measurement, provided it has access to fresh ancillas.

4. Discuss how we can implement effective Pauli operations on the encoded (logical) qubit∣∣0̂〉, ∣∣1̂〉 by only acting with Paulis on the encoding (physical) qubits.

5. Given two qubits encoded using the 3-qubit code, show that we can implement a CNOT
between the logical qubits by acting with CNOTs only on the physical qubits.

Problem 4: Fast Fourier transform. (25 points)

In this problem, we will use the expression

|x1, . . . , xn〉 7→ 1
2n/2 (|0〉+ 22πi0.xn |1〉)(|0〉+ 22πi0.xn−1xn |1〉)(|0〉+ 22πi0.x1x2...xn |1〉) (1)

for the quantum Fourier transform F to derive a classical Fourier transformation (the fast
Fourier transformation, FFT) on vectors of length 2n which scales as O(n2n).

1. Show first that directly carrying out the sum in the classical Fourier transform requires
O(22n) steps.

2. As shown in the lecture, F maps
∑

x ax |x〉 to
∑

y by |y〉, where by is the classical Fourier
transform of ax. Use this, combined with Eq. (1), to derive an explicit expression of by
in terms of the ax (in the spirit of Eq. (1), of course).

3. Your expression should contain a sum over x1, . . . , xn. Show that this sum can be
carried out bit by bit. In each step, it takes e.g. an input vector ax ≡ f(x1, . . . , xn) and
replaces it by g(x1, . . . , xn−1, y1), and so further, sequentially replacing xi’s by yj’s.

4. What is the number of elementary operations required for each of these transforma-
tions? What is the total computational cost of the algorithm?


