
Exercise Sheet 2

Quantum Information

To be returned no later than April 30, 2015

(20 points) Problem 1: Purification.
1) Find a purification of the following classical-quantum state:

ρXA =
∑
j

pj |j〉 〈j|X ⊗ ρ
A
j ,

where {|j〉X}j is an orthonormal basis of system X, 0 ≤ pj ≤ 1 are probabilities, i.e.
∑

j pj = 1, and
ρAj is a density matrix on system A for every j.
2) Let {pj, ρAj }j be an ensemble of density operators. Suppose that |ψj〉AE is a purification of ρAj . The
expected density operator of the ensemble is

ρA =
∑
j

pjρ
A
j .

Find a purification of ρA.
Hint: Remember that there is no restriction on a purifying system. You may choose it as big/small as
you want.

(20 points) Problem 2: Linearity of a superoperator.
Consider a non-linear super operator

E(ρ) = exp{iπZ Tr(Zρ)} ρ exp{−iπZ Tr(Zρ)},

where Z is a Pauli Z operator.
1) Check that E is positive and trace-preserving.

Suppose that the initial density matrix is ρ = 1
2
I, realized as the ensemble

ρ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| ,

where |0〉 and |1〉 are eigenvalues of Z operator.
2) Find the evolution of this operator governed by E , i.e. calculate E(ρ).

Now suppose that, immediately after preparing the ensemble ρ above, we do nothing if the state
has been prepared as |0〉, but we rotate it to |+〉 if it has been prepared as |1〉. The density matrix is
now

ρ′ =
1

2
|0〉 〈0|+ 1

2
|+〉 〈+| .

1



2

3) Find the evolution of this operator governed by E , i.e. calculate E(ρ′). What happens to a state if
it was prepared as |0〉?

Now compare the results obtained in parts 2) and 3). If the calculations were carried out correctly,
you will find that a state |0〉 evolves differently under the same evolution in these two scenarios. But
what is the difference between the two cases? The difference was that if the spin was initially prepared
as |1〉, we took different actions: doing nothing in one case, but rotating the spin in the second case.
Yet we have found that the spin behaves differently in the two cases, even if it was initially prepared
as |0〉!

(15 points) Problem 3: Complete positivity. Show that the evolution with Kraus operators
Mα given by

E(ρ) =
∑
α

MαρM
†
α

is completely positive.
Hint: Remind that a completely positive map is such a map that the output of the tensor product
Ik ⊗ E for any finite k is a positive operator whenever the input is a positive operator (the input
operator now lives on a tensor-product Hilbert space).

(15 points) Problem 4: Measurement. Suppose that the initial state of system AB is

|φλ〉 =
√
λ |00〉+

√
1− λ |11〉 .

The goal is to obtain a maximally entangled state
∣∣φ1/2

〉
= 1√

2
|00〉 + 1√

2
|11〉 with some probability

after a measurement on system A.
1) Show that the following operators satisfy the completeness condition: Π0 = (|0〉 〈0|+√γ |1〉 〈1|)A⊗IB
and Π1 =

√
1− γ |1〉 〈1|A ⊗ IB, with 0 ≤ γ ≤ 1. In other words, show that

∑
j Π∗jΠj = IAB.

2) Find possible states to which the initial one collapses onto and calculate the corresponding proba-
bilities.
3) Find a value γ such that one of post-measurement states becomes a maximally entangled state.
Calculate the corresponding probability with which the initial state becomes a maximally entangled
state.
Note that if λ = 1

2
initially, probability of the initial state collapsing onto the maximally entangled

one is 1.

(30 points) Problem 5: Channels. In this problem, we will study some commonly appearing
quantum channels. In addition to the problems listed, verify for each channel that it is a CPTP map
(completely positive trace preserving map) and give its Kraus representation.
1) Dephasing channel. This channel acts as follows on any given density operator:

ρ→ (1− p)ρ+ pZ ρZ.

Show that the action of the dephasing channel on the Bloch vector is
1

2
(I + rxX + ryY + rzZ)→ 1

2
(I + (1− 2p)rxX + (1− 2p)ryY + rzZ),
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so that the channel preserves any component of the Bloch vector in the Z direction, while shrinking
any component in the X or Y direction.
2) Amplitude damping channel. Let the parameter γ denote the probability of decay so that 0 ≤ γ ≤ 1.

The channel with transmission parameter 1− γ is specified by two Kraus operators:

Π0 =
√
γ |0〉 〈1| , Π1 = |0〉 〈0|+

√
1− γ |1〉 〈1| .

a) Consider a single-qubit density operator with the following matrix representation with respect to
the computation basis

ρ =

(
1− p η

η∗ p

)
,

where 0 ≤ p ≤ 1 and η is some complex number. Find the matrix representation of this density
operator after the action of the amplitude damping channel.
b) Show that the amplitude damping channel obeys a composition rule. Consider an amplitude
damping channel N1 with transmission parameter 1 − γ1 and consider another amplitude damping
channel N2 with transmission parameter 1 − γ2. Show that the composition channel N1 ◦ N2 is an
amplitude damping channel with transmission parameter (1− γ1)(1− γ2).
3) Twirling operation. Show that randomly applying the Pauli operators I, X, Y, Z with uniform
probability to any density operator gives the maximally mixed state:

1

4
ρ+

1

4
XρX +

1

4
Y ρY +

1

4
ZρZ =

1

2
I.

Hint: Represent the density operator as ρ = 1
2
(I+ rxX + ryY + rzZ) and apply the commutation rules

of the Pauli operators.
4) Classical-quantum channel. A classical-quantum channel is one that first measures the input state
in a particular orthonormal basis and outputs a density operator conditional on the result of the
measurement:

E(ρ) =
∑
k

〈k| ρ |k〉σk,

where {|k〉}k is an orthonormal basis for the Hilbert space on which the initial density operator ρ acts,
and {σk}k is a set of density operators. Show that the classical-quantum channel is an entanglement-
breaking channel− i.e., if we input the B system of an entangled state ψAB, then the resulting state
on AB is no longer entangled.
Hint: Remind that a separable state can always be written as a convex combination of pure product
states ∑

j

pj |φj〉 〈φj|A ⊗ |ψj〉 〈ψj|B .


